The Conserved Discs-large Binding Partner Banderuola Regulates Asymmetric Cell Division in Drosophila
نویسندگان
چکیده
BACKGROUND Asymmetric cell division (ACD) is a key process that allows different cell types to be generated at precisely defined times and positions. In Drosophila, neural precursor cells rely heavily on ACD to generate the different cell types in the nervous system. A conserved protein machinery that regulates ACD has been identified in Drosophila, but how this machinery acts to allow the establishment of differential cell fates is not entirely understood. RESULTS To identify additional proteins required for ACD, we have carried out an in vivo live imaging RNAi screen for genes affecting the asymmetric segregation of Numb in Drosophila sensory organ precursor cells. We identify Banderuola (Bnd), an essential regulator of cell polarization, spindle orientation, and asymmetric protein localization in Drosophila neural precursor cells. Genetic and biochemical experiments show that Bnd acts together with the membrane-associated tumor suppressor Discs-large (Dlg) to establish antagonistic cortical domains during ACD. Inhibiting Bnd strongly enhances the dlg phenotype, causing massive brain tumors upon knockdown of both genes. Because the mammalian homologs of Bnd and Dlg are interacting as well, Bnd function might be conserved in vertebrates, and it might also regulate cell polarity in higher organisms. CONCLUSIONS Bnd is a novel regulator of ACD in different types of cells. Our data place Bnd at the top of the hierarchy of the factors involved in ACD, suggesting that its main function is to mediate the localization and function of the Dlg tumor suppressor. Bnd has an antioncogenic function that is redundant with Dlg, and the physical interaction between the two proteins is conserved in evolution.
منابع مشابه
The Partner of Inscuteable/Discs-Large Complex Is Required to Establish Planar Polarity during Asymmetric Cell Division in Drosophila
Frizzled (Fz) signaling regulates cell polarity in both vertebrates and invertebrates. In Drosophila, Fz orients the asymmetric division of the sensory organ precursor cell (pI) along the antero-posterior axis of the notum. Planar polarization involves a remodeling of the apical-basal polarity of the pI cell. The Discs-large (Dlg) and Partner of Inscuteable (Pins) proteins accumulate at the ant...
متن کاملThe planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila.
Cell fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell division. In the Drosophila bristle lineage, the sensory organ precursor (pI) cell is polarized along the anteroposterior (AP) axis by Frizzled (Fz) receptor signaling. We show here that Fz localizes at the posterior apical cortex of the pI cell prior to mitosis, whereas Strabism...
متن کاملAsymmetric division of Drosophila melanogaster neuroblasts
The Rockefeller University Press $30.00 J. Cell Biol. Vol. 188 No. 5 693–706 www.jcb.org/cgi/doi/10.1083/jcb.200905024 JCB 693 Correspondence to Cayetano Gonzalez: [email protected] Abbreviations used in this paper: Baz, Bazooka; Dlg, Discs large; GMC, ganglion mother cell; Insc, Inscuteable; MARCM, mosaic analysis with a repressible cell marker; Mira, Miranda; MTOC, microtubule-organiz...
متن کاملMitotic activation of the kinase Aurora-A requires its binding partner Bora.
The protein kinase Aurora-A is required for centrosome maturation, spindle assembly, and asymmetric protein localization during mitosis. Here, we describe the identification of Bora, a conserved protein that is required for the activation of Aurora-A at the onset of mitosis. In the Drosophila peripheral nervous system, bora mutants have defects during asymmetric cell division identical to those...
متن کاملThe PDZ Protein Canoe Regulates the Asymmetric Division of Drosophila Neuroblasts and Muscle Progenitors
Asymmetric cell division is a conserved mechanism to generate cellular diversity during animal development and a key process in cancer and stem cell biology. Despite the increasing number of proteins characterized, the complex network of proteins interactions established during asymmetric cell division is still poorly understood. This suggests that additional components must be contributing to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 24 شماره
صفحات -
تاریخ انتشار 2014